
COMP2111 Week 2
Term 1, 2024

Discrete Mathematics Recap I

1



Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

2



Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

3



Sets

A set is defined by the collection of its elements.
Sets are typically described by:
(a) Explicit enumeration of their elements

S1 = {a, b, c} = {a, a, b, b, b, c}
= {b, c , a} = . . . three elements

S2 = {a, {a}} two elements

S3 = {a, b, {a, b}} three elements

S4 = {} zero elements

S5 = {{{}}} one element

S6 = { {}, {{}} } two elements

4



(b) Specifying the properties their elements must satisfy; the
elements are taken from some ‘universal’ domain, U . A typical
description involves a logical property P(x)

S = { x : x ∈ U and P(x) } = { x ∈ U : P(x) }

We distinguish between an element and the set comprising this
single element. Thus always a 6= {a}.
Set {} is empty (no elements);
set {{}} is nonempty — it has one element.
There is only one empty set; only one set consisting of a single a;
only one set of all natural numbers.

5



(c) Constructions from other sets (already defined)

Union, intersection, set difference, symmetric difference,
complement

Power set Pow(X ) = { A : A ⊆ X }
Cartesian product (below)

Empty set ∅
∅ ⊆ X for all sets X .

S ⊆ T S is a subset of T ; includes the case of T ⊆ T
S ⊂ T a proper subset: S ⊆ T and S 6= T

NB

Element and subset are two different concepts

a ∈ {a, b}, a 6⊆ {a, b}; {a} ⊆ {a, b}, {a} /∈ {a, b}

6



Cardinality

Number of elements in a set X (various notations):

|X | = #(X ) = card(X )

Fact

Always |Pow(X )| = 2|X | (for finite X)

|∅| = 0 Pow(∅) = {∅} |Pow(∅)| = 1
Pow(Pow(∅)) = {∅, {∅}} |Pow(Pow(∅))| = 2 . . .

|{a}| = 1 Pow({a}) = {∅, {a}} |Pow({a})| = 2 . . .

7



Sets of Numbers

Natural numbers N = {0, 1, 2, . . .}
Positive integers {1, 2, . . .}
Common notation: N+ = N>0 = Z>0 = N \ {0}

Integers Z = {. . . ,−1, 0, 1, 2, . . .}
Rational numbers Q ⊆

{
m
n : m, n ∈ Z, n 6= 0

}
Real numbers R

8



Intervals of numbers (applies to any type)

[a, b] = {x |a ≤ x ≤ b}; (a, b) = {x |a < x < b}

[a, b] ⊇ [a, b), (a, b] ⊇ (a, b)

NB

(a, a) = (a, a] = [a, a) = ∅; however [a, a] = {a}.

Intervals of N,Z are finite: if m ≤ n

[m, n] = {m,m + 1, . . . , n} |[m, n]| = n −m + 1

9



Set Operations

Union A ∪ B; Intersection A ∩ B

There is a correspondence between set operations and logical
operators (to be discussed later)

We say that A,B are disjoint if A ∩ B = ∅

NB

A ∪ B = B if and only if A ⊆ B

A ∩ B = B if and only if A ⊇ B

10



Other set operations

A \ B — difference, set difference, relative complement
It corresponds (logically) to a but not b

A⊕ B — symmetric difference

A⊕ B
def
= (A \ B) ∪ (B \ A)

It corresponds to a and not b or b and not a; also known as
xor (exclusive or)

Ac — set complement w.r.t. the ‘universe’ U
It corresponds to ‘not a’

11



Laws of Set Operations

Commutativity A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associativity (A ∪ B) ∪ C = A ∪ (B ∪ C )
(A ∩ B) ∩ C = A ∩ (B ∩ C )

Distribution A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

Identity A ∪ ∅ = A
A ∩ U = A

Complementation A ∪ (Ac) = U
A ∩ (Ac) = ∅

12



Other useful set laws

The following are all derivable from the previous 10 laws.
Idempotence A ∩ A = A

A ∪ A = A
Double complementation (Ac)c = A

Annihilation A ∩ ∅ = ∅
A ∪ U = U

de Morgan’s Laws (A ∩ B)c = Ac ∪ Bc

(A ∪ B)c = Ac ∩ Bc

13



Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)

= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

14



Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)

= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

15



Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)

= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

16



Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)

= (A ∪ A) (Identity)

17



Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

18



A useful result

Definition

If A is a set defined using ∩, ∪, ∅ and U , then dual(A) is the
expression obtained by replacing ∩ with ∪ (and vice-versa) and ∅
with U (and vice-versa).

Theorem (Principle of Duality)

If you can prove A1 = A2 using the Laws of Set Operations then
you can prove dual(A1) = dual(A2)

Example

Absorption law: A ∪ (A ∩ B) = A

Dual: A ∩ (A ∪ B) = A

19



Application (Idempotence of ∩)

Recall Idempotence of ∪:

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

20



Application (Idempotence of ∩)

Invoke the dual laws!

A = A ∩ U (Identity)
= A ∩ (A ∪ Ac) (Complementation)
= (A ∩ A) ∪ (A ∩ Ac) (Distributivity)
= (A ∩ A) ∪ ∅ (Complementation)
= (A ∩ A) (Identity)

21



Cartesian Product

S × T
def
= { (s, t) : s ∈ S , t ∈ T } where (s, t) is an ordered pair

×n
i=1Si

def
= { (s1, . . . , sn) : sk ∈ Sk , for 1 ≤ k ≤ n }

S2 = S × S , S3 = S × S × S , . . . , Sn = ×n
1S , . . .

∅ × S = ∅, for every S
|S × T | = |S | · |T |, | ×n

i=1 Si | =
∏n

i=1 |Si |

22



Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

23



Formal Languages

Σ — alphabet, a finite, nonempty set

Examples (of various alphabets and their intended uses)

Σ = {a, b, . . . , z} for single words (in lower case)
Σ = { ,−, a, b, . . . , z} for composite terms
Σ = {0, 1} for binary integers
Σ = {0, 1, . . . , 9} for decimal integers

The above cases all have a natural ordering; a formal language
does not need this.

24



Definition

word — any finite string of symbols from Σ
empty word — λ (sometimes ε)

Example

w = aba, w = 01101 . . . 1, etc.

length(w) — # of symbols in w
length(aaa) = 3, length(λ) = 0
The only operation on words (discussed here) is concatenation,
written as juxtaposition vw ,wvw , abw ,wbv , . . .

NB

λw = w = wλ
length(vw) = length(v) + length(w)

25



Notation: Σk — set of all words of length k
We often identify Σ0 = {λ}, Σ1 = Σ
Σ∗ — set of all words (of all [finite] lengths)
Σ+ — set of all nonempty words (of any positive length)

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . ; Σ≤n =
n⋃

i=0

Σi

Σ+ = Σ1 ∪ Σ2 ∪ . . . = Σ∗ \ {λ}

A language is a subset of Σ∗. Typically, only the subsets that can
be formed (or described) according to certain rules are of interest.
Such a collection of ‘descriptive/formative’ rules is called a
grammar.

Examples: Programming languages, Database query languages

26



Example (Decimal numbers)

The “language” of all numbers written in decimal to at most two
decimal places can be described as follows:

Σ = {−, ., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Consider all words w ∈ Σ∗ which satisfy the following:

w contains at most one instance of −, and if it contains an
instance then it is the first symbol.
w contains at most one instance of ., and if it contains an
instance then it is preceded by a symbol in
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and followed by either one or two
symbols in that set.
w contains at least one symbol from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

NB

According to these rules 123, 123.0 and 123.00 are all (distinct)
words in this language.

27



Example (HTML documents)

Take Σ = {“<html>”, “</html>”, “<head>”, “</head>”,
“<body>”, . . .}.
The (language of) valid HTML documents is loosely described
as follows:

Starts with “<html>”

Next symbol is “<head>”

Followed by zero or more symbols from the set of HeadItems
(defined elsewhere)

Followed by “</head>”

Followed by “<body>”

Followed by zero or more symbols from the set of BodyItems
(defined elsewhere)

Followed by “</body>”

Followed by “</html>”

28



Set Operations for Languages

Languages are sets, so the standard set operations (∩, ∪, \, ⊕,
etc) can be used to build new languages.
Two set operations that apply to languages uniquely:

Concatenation (written as juxtaposition):
XY = {xy : x ∈ X and y ∈ Y }
Kleene star: X ∗ is the set of words that are made up by
concatenating 0 or more words in X

29



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}

A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ =

{λ}

∅∗ =

{λ}

30



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}

{λ}∗ =

{λ}

∅∗ =

{λ}

31



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ =

{λ}
∅∗ =

{λ}

32



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}

∅∗ =

{λ}

33



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ =

{λ}

34



Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

35



Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

36



Relations and Functions

Relations capture the idea that objects are related (well, duh)

≤ (“less than”)

“is a Facebook friend of”

“has a different hair colour than”

Functions capture the idea of transforming inputs into outputs.

In general, functions and relations formalise the concept of
interaction among objects from various domains; however, there
must be a specified domain for each type of object.

37



Applications

Relations and functions are ubiquitous in Computer Science

Databases are collections of relations

Common data structures (e.g. graphs) are relations

Any ordering is a relation

Functions, procedures and programs are relations between
their inputs and outputs

Relations are therefore used in most problem specifications and to
describe formal properties of programs.
For this reason, studying relations and their properties helps with
formalisation, implementation and verification of programs.

38



Relations

An n-ary relation is a subset of the Cartesian product of n sets.

R ⊆ S1 × S2 × . . .× Sn

x ∈ R → x = (x1, x2, . . . xn) where each xi ∈ Si

If n = 2 we have a binary relation R ⊆ S × T .
(mostly we consider binary relations)
equivalent notations: (x1, x2, . . . xn) ∈ R ⇐⇒ R(x1, x2, . . . xn)
for binary relations: (x , y) ∈ R ⇐⇒ R(x , y) ⇐⇒ xRy .

39



Examples

Equality: =

Inequality: ≤, ≥, <, >, 6=
Divides relation: | (recall m|n if n = km for some k ∈ Z)

Element of: ∈
Subset, superset: ⊆, ⊂, ⊇, ⊃
Size functions (sort of): |·|, length(·)

40



Database Examples

Example (Course enrolments)

S = set of CSE students
C = set of CSE courses
E = enrolments = { (s, c) : s takes c }

E ⊆ S × C

In practice, almost always there are various ‘onto’ (nonemptiness)
and 1–1 (uniqueness) constraints on database relations.

41



Example (Class schedule)

C = CSE courses
T = starting time (hour & day)
R = lecture rooms
S = schedule =

{ (c , t, r) : c is at t in r } ⊆ C × T × R

Example (sport stats)

R ⊆ competitions× results× years× athletes

42



n-ary Relations

Relations can be defined linking k ≥ 1 domains D1, . . . ,Dk

simultaneously.
In database situations one also allows for unary (n = 1) relations.
Most common are binary relations

R ⊆ S × T ; R = {(s, t) : “some property that links s, t”}

For related s, t we can write (s, t) ∈ R or sRt; for unrelated items
either (s, t) /∈ R or s 6Rt.
R can be defined by

explicit enumeration of interrelated k-tuples (ordered pairs in
case of binary relations);

properties that identify relevant tuples within the entire
D1 × D2 × . . .× Dk ;

construction from other relations.

43



Relation R as Correspondence From S to T

Given R ⊆ S × T , A ⊆ S , and B ⊆ T .

R(A)
def
= {t ∈ T : (s, t) ∈ R for some s ∈ A}

Converse relation R← ⊆ T × S :

R←
def
= {(t, s) ∈ T × S : (s, t) ∈ R}

R←(B) = {s ∈ S : (s, t) ∈ R for some t ∈ B}
Observe that (R←)← = R.

44



Binary Relations

A binary relation, say R ⊆ S × T , can be presented as a matrix
with rows enumerated by (the elements of) S and the columns by
T ; eg. for S = {s1, s2, s3} and T = {t1, t2, t3, t4} we may have • ◦ • •◦ • • •

• • ◦ ◦



45



Relations on a Single Domain

Particularly important are binary relationships between the
elements of the same set. We say that ‘R is a relation on S ’ if

R ⊆ S × S

Such relations can be visualized as a directed graph:

Vertices: Elements of S

Edges: Elements of R

46



Example

S = {1, 2, 3}
R = {(1, 2), (2, 3), (3, 2)}

As a matrix:  ◦ • ◦◦ ◦ •
◦ • ◦



47



Example

S = {1, 2, 3}
R = {(1, 2), (2, 3), (3, 2)}

As a graph:

2 3

1

48



Special (Trivial) Relations

(all w.r.t. set S)

Identity (diagonal, equality) E = { (x , x) : x ∈ S }
Empty ∅

Universal U = S × S

49



Important Properties of Binary Relations R ⊆ S × S

(R) reflexive (x , x) ∈ R ∀ x ∈ S
(AR) antireflexive (x , x) /∈ R ∀ x ∈ S

(S) symmetric (x , y) ∈ R → (y , x) ∈ R ∀ x , y ∈ S
(AS) antisymmetric (x , y), (y , x) ∈ R → x = y ∀ x , y ∈ S

(T) transitive (x , y), (y , z) ∈ R → (x , z) ∈ R ∀ x , y , z ∈ S

NB

An object, notion etc. is considered to satisfy a property if none of
its instances violates any defining statement of that property.

50



Examples

(R) reflexive (x , x) ∈ R for all x ∈ S
[ • • ◦

◦ • ◦
• ◦ •

]
(AR) antireflexive (x , x) /∈ R

[ ◦ • •
◦ ◦ ◦
• ◦ ◦

]
(S) symmetric (x , y) ∈ R → (y , x) ∈ R

[ • ◦ •
◦ ◦ •
• • ◦

]
(AS) antisymmetric (x , y), (y , x) ∈ R → x = y[ • • ◦

◦ ◦ •
• ◦ ◦

]
(T) transitive (x , y), (y , z) ∈ R → (x , z) ∈ R[ ◦ ◦ •

• • •
◦ ◦ ◦

]

51



Common relations and their properties

(R) (AR) (S) (AS) (T )

=

X X X X

≤

X X X

<

X X X

∅

X X X X

U

X X X

|

X X X

52



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤

X X X

<

X X X

∅

X X X X

U

X X X

|

X X X

53



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤ X X X
<

X X X

∅

X X X X

U

X X X

|

X X X

54



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤ X X X
< X X X
∅

X X X X

U

X X X

|

X X X

55



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤ X X X
< X X X
∅ X X X X
U

X X X

|

X X X

56



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
|

X X X

57



Common relations and their properties

(R) (AR) (S) (AS) (T )

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

58



Interaction of Properties

A relation can be both symmetric and antisymmetric. Namely,
when R consists only of some pairs (x , x), x ∈ S .
A relation cannot be simultaneously reflexive and antireflexive
(unless S = ∅).

NB

nonreflexive
nonsymmetric

}
is not the same as

{
antireflexive/irreflexive
antisymmetric

59



Equivalence Relations and Partitions

Relation R is called an equivalence relation if it satisfies
(R), (S), (T). Every equivalence R defines equivalence classes on
its domain S .
The equivalence class [s] (w.r.t. R) of an element s ∈ S is

[s] = { t ∈ S : tRs }

The collection of all equivalence classes [S ]R = { [s] : s ∈ S } is a
partition of S :

S =
⋃
s∈S

[s]

60



Thus, the equivalence classes are disjoint and jointly cover the
entire domain. It means that every element belongs to one (and
only one) equivalence class.
For s, t ∈ S either [s] = [t], when s R t, or [s] ∩ [t] = ∅, when
s 6R t. We write s ∼R t when s, t are in the same equivalence class.
In the opposite direction, a partition of a set defines an equivalence
relation on that set. If S = S1 ∪̇ . . . ∪̇ Sk , then we specify s ∼ t
exactly when s and t belong to the same Si .

61



Partial Order

A partial order � on S satisfies (R), (AS), (T).
We call (S ,�) a poset — partially ordered set

Examples

Posets:

(Z,≤)

(Pow(X ),⊆) for some set X

(N, |)
Not posets:

(Z, <)

(Z, |)

62



Hasse diagram

Every finite poset (S ,�) can be represented with a Hasse
diagram:

Nodes are elements of S

An edge is drawn upward from x to y if x ≺ y and there is no
z such that x ≺ z ≺ y

Example

Hasse diagram for positive divisors of 24 ordered by |:

1

3 2

6 4

12 8

24

63



Ordering Concepts

Definition

Let (S ,�) be a poset.

Minimal element: x such that there is no y with y � x

Maximal element: x such that there is no y with x � y

Minimum (least) element: x such that x � y for all y ∈ S

Maximum (greatest) element: x such that y � x for all
y ∈ S

NB

There may be multiple minimal/maximal elements.

Minimum/maximum elements are the unique
minimal/maximal elements if they exist.

Minimal/maximal elements always exist in finite posets, but
not necessarily in infinite posets.

64



Examples

Examples

Pow({a, b, c}) with the order ⊆
∅ is minimum; {a, b, c} is maximum

Pow({a, b, c}) \ {{a, b, c}} (proper subsets of {a, b, c})
Each two-element subset {a, b}, {a, c}, {b, c} is maximal.

But there is no maximum

65



Summary of topics

Sets

Formal languages

Relations

Functions (tomorrow)

Propositional Logic

66


